
EUROPEAN MIDDLEWARE INITIATIVE

COMMON AUTHENTICATION LIBRARY –
DEVELOPER’S GUIDE

Document version: 2.1.8

EMI Component Version: 2.x

Date: February 26, 2017

1/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

This work is co-funded by the European Commission as part of the EMI project under Grant Agreement
INFSO-RI-261611.

Copyright c© EMI. 2010-2013.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, ei-
ther express or implied. See the License for the specific language governing permissions and
limitations under the License.

2/14

http://www.apache.org/licenses/LICENSE-2.0


TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

CONTENTS

1 INTRODUCTION 4

1.1 LANGUAGE BINDINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 GETTING AND BUILDING LIBRARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 GENERAL GUIDELINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 CONTEXT AND PARAMETER SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 CANL COMPONENTS 5

2.1 HEADER FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 BUILDING CLIENT PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 CLIENT-SERVER AUTHENTICATED CONNECTION 7

3.1 MAIN API WITHOUT DIRECT CALLS TO OPENSSL . . . . . . . . . . . . . . . . . . . . 7

3.2 MAIN API WITH DIRECT CALLS TO OPENSSL . . . . . . . . . . . . . . . . . . . . . . 9

3.3 SECURE CLIENT-SERVER CONNECTION EXAMPLE . . . . . . . . . . . . . . . . . . . 9

4 CREDENTIALS HANDLING 11

4.1 CERTIFICATE API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 MAKE NEW PROXY CERTIFICATE – EXAMPLE . . . . . . . . . . . . . . . . . . . . . . 14

3/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

1 INTRODUCTION

This document serves as a developer’s guide and could be seen as an API reference too, even though
comments in the header files may give the reader better insights into that matter.

Common Authentication Library (caNl for short) was designed to provide common security layer support
in grid applications. It is largely based on existing code (VOMS, LB). Its simple API can be devided by
functionality into two parts:

• caNl Main API is used to establish (secure) client-server connection with one or both sides authenti-
cated, send or receive data. As will be described in 4, most of the Main API is not directly dependent
on some chosen cryptography toolkit (SSL implementation). It is also internally plugin-based and
therefore other security mechanisms support can be added in future.

• caNl Certificate API allows certificate and proxy management for example proxy creation, signing,
etc. We may think of Certificate API as the second level of Main API

Currently there is EMI Product Team assigned to caNl development with three subgroups for each lan-
guage binding.

1.1 LANGUAGE BINDINGS

caNl is developed in C language as well as C++ and Java language bindings, however this document
covers only the C interface.

1.2 GETTING AND BUILDING LIBRARY

TODO package names

external dependencies:

• c-ares – asynchronous resolver library

• openssl – cryptography and SSL/TLS toolkit

1.3 GENERAL GUIDELINES

All function names are prefixed with canl_Naming
conventions

All structures and objects passed in output of functions (even though pointers are used as a help)Input and output
arguments are dynamically allocated, so proper functions to free the allocated memory has to be called. e.g.

canl_free_ctx() deallocates members of the structure canl_ctx.

Almost all types used in caNl are Opaque types – i.e. their structure is not exposed to users. To useOpaque types

and/or modify these structures API call has to be used. Example of opaque type is canl_ctx.

The return type of most of the API functions is canl_err_code which in most cases can be interpretedReturn values

as int. Unless specified otherwise, zero return value means success, non-zero failure. Standard error
codes from errno.h are used as much as possible.

Few API functions return char *. In such a case NULL indicates an error, non-null value means success.

4/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

1.4 CONTEXT AND PARAMETER SETTINGS

All the API functions use a context parameter of type canl_ctx to maintain state information like error
message and code. Some API functions also use an io context of type canl_io_handler which keeps
information about each particular connection (for example socket number, oid, SSL context).The caller can
create as many contexts as needed, all of them will be independent. When calling canl_create_ctx()
or canl_create_io_handler() all members of the objects are initialized with default values which are
often NULL for pointer type and 0 in case of int and similar types.

2 CANL COMPONENTS

2.1 HEADER FILES

Header files for the common structures and functions are summarized in table 1.

canl.h Definition of context objects and Main API common functions declarations.
canl_ssl.h Declaration of functions that use X509 certificates based authentication mechanism

(pretty much dependent on openssl library functions).
canl_cred.h Definition of context objects of the Certificate API and functions declarations.

Table 1: Header files

2.2 BUILDING CLIENT PROGRAMS

The easiest way to build programs using caNl in C is to use GNU’s libtool to take care of all the depen-
dencies:

libtool --mode=compile gcc -c example1.c -D_GNU_SOURCE
libtool --mode=link gcc -o example1 example1.o -lcanl_c

2.3 CONTEXT

There are two opaque data structures representing caNl Main API context: canl_ctx and canl_io_handlerContext
initialization (see section 1.4). canl_ctx must be initialized before any caNl API call. canl_io_handler must be ini-

tialized before calling function representing io operation (for example canl_io_connect()) and after
canl_ctx initialization.

#include <canl . h>
#include <can l_ss l . h>

can l_ io_hand le r my_io_h = NULL ;
can l_c tx my_ctx ;
my_ctx = can l_c rea te_c tx ( ) ;
e r r = can l_crea te_ io_hand le r ( my_ctx , &my_io_h ) ;

There is one opaque data structure representing caNl Certificate API context: canl_cred. It must only
be initialized before function calls that use this context as a parameter.

5/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

#include <canl . h>
#include <canl_cred . h>

can l_c tx c tx ;
canl_cred c_cred ;
c t x = can l_c rea te_c tx ( ) ;
canl_cred_new ( ctx , &c_cred ) ;

canl_ctx stores details of all errors which has occurred since context initialization, in human readableObtaining error
description format. To obtain it use canl_get_error_message():

p r i n t f ( "%s \ n " , canl_get_error_message ( my_ctx ) ) ;

It is recommended to free the memory allocated to each context if they are not needed anymore, in firstContext
deallocation case canl_io_handler , then canl_ctx in case of the Main API:

i f ( my_io_h )
can l_ io_des t roy ( my_ctx , my_io_h ) ;

can l_ f ree_c tx ( my_ctx ) ;

as for the Certificate API:

can l_cred_f ree ( ctx , c_cred ) ;

6/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

3 CLIENT-SERVER AUTHENTICATED CONNECTION

For client-server authenticated connection we just use caNl Main API calls. In time of writing this paper
caNl use openssl – SSL/TLS and cryptography toolkit. However, core of the caNl has been developed to
be as independent on any cryptography toolkit as possible, so it may support other libraries in the future.

3.1 MAIN API WITHOUT DIRECT CALLS TO OPENSSL

These are the functions of the Main API that do not use openssl API calls or variable types directly (as a
parameter or in their definitions):

• canl_ctx canl_create_ctx()

This function returns an initialized authentication context object

• void canl_free_ctx(canl_ctx cc)

This function will free the authentication context, releasing all associated information. The context
must not be used after this call.

– param cc – the authentication context to free

• canl error code canl_create_io_handler(canl_ctx cc, canl_io_handler *io)

This function will create an i/o handler from the authentication context. This handler shall be passed
to all I/O-related functions.

– param cc – the authentication context

– param io – return an initialized i/o context, or NULL if it did not succeed

– return – caNl error code

• canl_err_code canl_io_close(canl_ctx cc, canl_io_handler io)

This function will close an existing connection. The ’io’ object may be reused by another connection.
It is safe to call this function on an io object which was connected.

– param cc – the authentication context

– param io – the i/o context

– return – canl error code

• canl_err_code canl_io_connect(canl_ctx cc, canl_io_handler io,
const char *host, const char *service, int port, gss_OID_set auth_mechs,
int flags, struct timeval *timeout)

This function will try to connect to a server object, doing authentication (if not forbidden)

– param cc – the authentication context

– param io – the i/o context

– param host – the server to which to connect

– param service – the service on the server - usually NULL

– param port – the port on which the server is listening

7/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

– param auth_mechs – authentication mechanism to use

– param flags – for future usage

– param peer – if not NULL the canl_principal will be filled with peer’s principal info. Approppriate
free funcion should be called if canl_princ is no longer to be used

– param timeout – the timeout after which to drop the connect attempt

– return – canl error code

• canl_err_code canl_io_accept(canl_ctx cc, canl_io_handler io,int fd,
struct sockaddr s_addr, int flags,canl_principal *peer,
struct timeval *timeout)

This function will setup a server to accept connections from clients, doing authentication (if not
forbidden)

– param cc – the authentication context

– param io – the i/o context

– param fd – file descriptor to use

– param port – the port on which the server is listening

– param sockaddr – open socket address

– param flags – for future usage

– param peer – if not NULL the canl_principal will be filled with peer’s principal info. Approppriate
free funcion should be called if canl_princ is no longer to be used

– return – canl error code

• canl_err_code canl_princ_name(canl_ctx cc, const canl_principal cp, char **ret_name)

Get the peer’s principal name in text readable form.

– param cc – the authentication context

– param cp – canl structure to hold peer’s principal info. Have to be filled by previous call to
canl_io_accept or canl_io_connect funcions.

– param ret_name – text form of the peer’s princ. name

– return – canl error code

• void canl_princ_free(canl_ctx cc, canl_principal cp)

If canl_princ structure filled before by some canl io funcion, this function should be called to free the
allocated memory.

– param cc – the authentication context

– param cp – canl peer’s principal structure

– return – void

8/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

3.2 MAIN API WITH DIRECT CALLS TO OPENSSL

• canl_err_code canl_ctx_set_ssl_cred(canl_ctx cc, char *cert, char *key,
char *proxy, canl_password_callback clb, void *pass)

This function will set the credential to be associated to the context. These credentials will become
the default ones for all API calls depending on this context.

– param cc – the authentication context

– param cert – the certificate to be set

– param key – its private key

– param proxy – the proxy certificate to be set

– param clb – a callback function which should return the password to the private key, if needed

– param pass – user specified data that will be passed as is to the callback function. Note
that the content of this pointer will not be copied internally, and will be passed directly to
the callback. This means that altering the data pointed by it will have a direct effect on the
behavior of the function.

– return – canl error code

• canl_err_code canl_ctx_set_ca_dir(canl_ctx cc, const char *ca_dir)

Set certficate authority directory (openssl ca directory structure)

– param cc – rhe authentication context

– param ca_dir – the path that will be set. It will not be checked whether this path actually
contains the CAs or not

– return – canl error code

• canl_err_code canl_ctx_set_crl_dir(canl_ctx cc, const char *crl_dir)

– param cc – the authentication context

– param crl_dir – the path that will be set. It will not be checked whether this path actually
contains the CRLs or not

– return – canl error code

• canl_err_code canl_ctx_set_ssl_flags(canl_ctx cc, unsigned int flags)

Set SSL specific flags. This function can turn OCSP check ON. (OFF by default)

– param cc – the authentication context

– param flags – one of the canl_ctx_ssl_flags in canl_ssl.h (e.g. CANL_SSL_OCSP_VERIFY_ALL)

– return – canl error code

3.3 SECURE CLIENT-SERVER CONNECTION EXAMPLE

We give an example of a caNl client that use Main API with openssl. We do not define variables in this
example, unless their type is caNl defined. For complete sample see canl_samples_server.c in source
package or canl_sample_server.c at CVS

Include nesessary header files:

9/14

http://glite.cvs.cern.ch/cgi-bin/glite.cgi/emi.canl.canl-c/examples/canl_sample_server.c?revision=HEAD


TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

#include <canl . h>
#include <can l_ss l . h>

Initialize context and set parameters:

can l_c tx my_ctx ;
can l_ io_hand le r my_io_h = NULL ;
my_ctx = can l_c rea te_c tx ( ) ;
e r r = can l_crea te_ io_hand le r ( my_ctx , &my_io_h ) ;
e r r = can l_c tx_se t_ss l_c red ( my_ctx , serv_cer t , serv_key , NULL, NULL) ;

set user’s credentials (X509 auth. mechanism)

i f ( se rv_cer t | | serv_key | | p roxy_cer t ) {
e r r = can l_c tx_se t_ss l_c red ( my_ctx , serv_cer t , serv_key , proxy_cer t ,

NULL, NULL) ;
i f ( e r r ) {

p r i n t f ( " [ CLIENT ] cannot set c e r t i f i c a t e or key to contex t : %s \ n " ,
canl_get_error_message ( my_ctx ) ) ;

goto end ;
}

}

If using X509 auth. mechanism, we might set CA directory and/or CRL directory at this place. (If not set,
default directories will be used, that is those in proper env. variables ) . . .

Connect to the server, send something then read the response:

e r r = canl_ io_connect ( my_ctx , my_io_h , p_server , NULL, por t , NULL, 0 , &t imeout ) ;
i f ( e r r ) {

p r i n t f ( " [ CLIENT ] connect ion to %s cannot be es tab l i shed : %s \ n " ,
p_server , canl_get_error_message ( my_ctx ) ) ;

goto end ;
}

e r r = c a n l _ i o _ w r i t e ( my_ctx , my_io_h , buf , buf_len , &t imeout ) ;
i f ( e r r <= 0) {

p r i n t f ( " can ’ t w r i t e using s s l : %s \ n " ,
canl_get_error_message ( my_ctx ) ) ;

goto end ;
}

e r r = canl_ io_read ( my_ctx , my_io_h , buf , sizeof ( buf )−1, &t imeout ) ;
i f ( e r r > 0) {

buf [ e r r ] = ’ \0 ’ ;
p r i n t f ( " [ CLIENT ] rece ived : %s \ n " , buf ) ;
e r r = 0 ;

}

Free the allocated memory:

i f ( my_io_h )
can l_ io_des t roy ( my_ctx , my_io_h ) ;

can l_ f ree_c tx ( my_ctx ) ;

10/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

4 CREDENTIALS HANDLING

If we want to create new proxy certificate or for example delegate credentials, we can use caNl Certificate
API. This part of API uses X509 authentication mechanism (openssl library now)

4.1 CERTIFICATE API

These are the functions of the Certificate API, all of them use canl_ctx as first parameter and canl_err_code
as a return value, so we do not include them in following description:

• canl_err_code canl_cred_new(canl_ctx, canl_cred *cred)

This function creates new structure (context) to hold credentials.

– param cred – a new object will be returned to this pointer after success

• canl_err_code canl_cred_free(canl_ctx, canl_cred *cred)

This function will free the credentials context, releasing all associated information. The context must
not be used after this call.

– param cred – the credentials context to free

• canl_err_code canl_ctx_set_cred(canl_ctx, canl_cred cred)

This one sets users credentials to caNl context.

– param cred – credentials to set to global caNl context

• canl_err_code canl_cred_load_priv_key_file(canl_ctx, canl_cred cred, const
char * file, canl_password_callback clb, void *pass)

Load private key from specified file into the credentials context.

– param cred – credentials which save private key to

– param file – the file to load private key from

– param clb – the callback function which should return the password to the private key, if
needed.

– param pass – User specified data that will be passed as is to the callback function

• canl_cred_load_chain(canl_ctx, canl_cred cred, STACK_OF(X509) *chain) This func-
tion loads the certificate chain out of an openssl structure. The chain usually consist of a proxy
certificate and certificates forming a chain of trust.

– param cred – the credentials context to set chain to

– param chain – the openssl structure to load certificate chain from.

• canl_cred_load_chain_file(canl_ctx, canl_cred cred, const char * file) This func-
tion loads the certificate chain out of a file. The chain usually consists of a proxy certificate and
certificates forming a chain of trust.

– param cred – credentials which save certificate chain to

– param file – the file to load certificate chain from

11/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

• canl_err_code canl_cred_load_cert(canl_ctx, canl_cred cred, X509 *cert)

This function loads user certificate out of an openssl structure

– param cred – the credentials context to set certificate to

– param cert – the openssl structure to load certificate from

• canl_err_code canl_cred_load_cert_file(canl_ctx, canl_cred cred,
const char *file)

This function loads user certificate out of a file.

– param cred – credentials which save certificate to

– param file – the file to load certificate from

• canl_err_code canl_cred_set_lifetime(canl_ctx, canl_cred cred, const long lt)

This function sets the lifetime for a certificate which is going to be created

– param cred – the credentials context

– param lt – the lifetime in seconds

• canl_err_code canl_cred_set_extension(canl_ctx, canl_cred cred,
X509_EXTENSION *ext)

This function sets the certificate extension to for the certificate which is going to be created

– param cred – the credentials context

– param ext – the openssl structure holding X509 certificate extension

• canl_err_code canl_cred_set_cert_type(canl_ctx, canl_cred cred,
const enum canl_cert_type type)

This function sets the certificate type to for the certificate which is going to be created.

– param cred – the credentials context

– param type – a canl_cert_type in canl_cred.h

• canl_err_code canl_cred_sign_proxy(canl_ctx, canl_cred signer,
canl_cred proxy)

This function makes new proxy certificate based on information in proxy parameter. The new
certificate is signed with private key saved in signer. A new certificate chain is saved into proxy.

– param signer – the credentials context which holds signer’s certificate and key.

– param proxy – the credentials context with a certificate signing request, public key and user
certificate; optionally lifetime, certificate type and extensions.

• canl_err_code canl_cred_save_proxyfile(canl_ctx, canl_cred cred,
const char * file)

This function saves proxy certificate into a file.

– param cred – the credentials context with certificate to save

– param file – save the certificate into

12/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

• canl_err_code canl_cred_save_cert(canl_ctx, canl_cred cred, X509 **to)

This function saves certificate into openssl object of type X509

– param cred – the credentials context with certificate to save

– param to – save the certificate into

• canl_err_code canl_cred_save_chain(canl_ctx, canl_cred cred, STACK_OF(X509) **to)

This function saves certificate chain of trust with proxy certificate into openssl object of type STACK_OF(X509).

– param cred – the credentials context with certificate chain to save

– param to – save the certificate into

• canl_err_code canl_cred_new_req(canl_ctx, canl_cred cred, unsigned int bits)

This function creates a new certificate signing request after a new key pair is generated.

– param cred – the credentials context, certificate signing request is saved there

– param bits – the key length

• canl_err_code canl_cred_save_req(canl_ctx, canl_cred cred, X509_REQ **to)

This function saves certificate signing request into openssl object of type X509_REQ.

– param cred – the credentials context with certificate request

– param to – save the certificate request into

• canl_err_code canl_cred_save_req(canl_ctx, canl_cred cred, X509_REQ **to)

This function loads certificate signing request from openssl object of type X509_REQ into caNl
certificate context

– param cred – the credentials context, the cert. request will be stored there

– param to – load the certificate request from

• canl_err_code canl_verify_chain(canl_ctx ctx, X509 *ucert, STACK_OF(X509) *cert_chain, char *cadir)

Verify the certificate chain, openssl verification, CRL, OCSP, signing policies etc...

– param ucert – user certificate

– param cert_chain – certificate chain to verify

– param cadir – CA certificate directory

• canl_err_code canl_verify_chain_wo_ossl(canl_ctx ctx, char *cadir, X509_STORE_CTX *store_ctx)

Verify certificate chain, SKIP openssl verif. part; Check CRL, OCSP (if on), signing policies etc.
(This is special case usage of caNl, not recommended to use unless you really know what you are
doing)

– param cadir – CA certificate directory

– param store_ctx – openssl store context structure fed with certificates to verify

13/14



TITLE:
Common Authentication Library – Developer’s Guide

Date: February 26, 2017

4.2 MAKE NEW PROXY CERTIFICATE – EXAMPLE

We give an example of a proxy certificate creation. We do not define variables in this example, unless
their type is caNl defined. We do not check return values in most cases as well. For complete sample see
example sources.

Include necessary header files:

#include <canl . h>
#include <canl_cred . h>

caNl context variables

canl_cred s igner = NULL ;
canl_cred proxy = NULL ;
can l_c tx c tx = NULL;

Initialize context:

c tx = can l_c rea te_c tx ( ) ;
r e t = canl_cred_new ( ctx , &proxy ) ;

Create a certificate request with a new key-pair.

r e t = canl_cred_new_req ( ctx , proxy , b i t s ) ;

(Optional) Set cert. creation parameters

r e t = c a n l _ c r e d _ s e t _ l i f e t i m e ( ctx , proxy , l i f e t i m e ) ;
r e t = can l_cred_set_cer t_ type ( ctx , proxy , CANL_RFC) ;

Load the signing credentials

r e t = canl_cred_new ( ctx , &s igner ) ;
r e t = c a n l _ c r e d _ l o a d _ c e r t _ f i l e ( ctx , s igner , user_cer t ) ;
r e t = can l_c red_ load_p r i v_key_ f i l e ( ctx , s igner , user_key , NULL, NULL) ;

Create the new proxy certificate

r e t = canl_cred_sign_proxy ( ctx , s igner , proxy ) ;

And store it in a file

r e t = can l_c red_save_proxy f i l e ( ctx , proxy , output ) ;

i f ( s igner )
can l_cred_f ree ( ctx , s igner ) ;

i f ( proxy )
can l_cred_f ree ( ctx , proxy ) ;

i f ( c t x )
can l_ f ree_c tx ( c t x ) ;

14/14


	1 Introduction
	1.1 Language Bindings
	1.2 Getting and Building Library
	1.3 General Guidelines
	1.4 Context and Parameter Settings

	2 caNl Components
	2.1 Header Files
	2.2 Building Client Programs
	2.3 Context

	3 Client-Server Authenticated Connection
	3.1 Main API Without Direct Calls To Openssl
	3.2 Main API With Direct Calls To Openssl
	3.3 Secure Client-Server Connection Example

	4 Credentials Handling
	4.1 Certificate API
	4.2 Make New Proxy Certificate – Example


